Multi-agent reinforcement learning for adaptive demand response in smart cities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive State Representations for Multi-agent Reinforcement Learning

When multiple agents act in the same environment, single-agent reinforcement learning (RL) techniques often fail, as they do not take into account other agents. An agent using single agent RL generally does not have sufficient information to obtain a good policy. However, multi-agent techniques that simply extend the state space to include information on the other agents suffer from a large ove...

متن کامل

Reinforcement Learning for Predictive Analytics in Smart Cities

The digitization of our lives cause a shift in the data production as well as in the required data management. Numerous nodes are capable of producing huge volumes of data in our everyday activities. Sensors, personal smart devices as well as the Internet of Things (IoT) paradigm lead to a vast infrastructure that covers all the aspects of activities in modern societies. In the most of the case...

متن کامل

Multi-Agent Reinforcement Learning

This thesis presents a novel approach to provide adaptive mechanisms to detect and categorise Flooding-Base DoS (FBDoS) and Flooding-Base DDoS (FBDDoS) attacks. These attacks are generally based on a flood of packets with the intention of overfilling key resources of the target, and today the attacks have the capability to disrupt networks of almost any size. To address this problem we propose ...

متن کامل

Multi-Agent Deep Reinforcement Learning

This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...

متن کامل

Multi-agent Relational Reinforcement Learning

In this paper we study Relational Reinforcement Learning in a multi-agent setting. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many benefits over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this relational struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2019

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1343/1/012058